A construction exampleΒΆ
Networks generated in pure python can be easily described as a tacoma temporal network. In a very simple model, the status of a temporal network changes to a new random network every \(\left\langle \tau \right\rangle\) where \(\tau\) follows an exponential distribution.
import numpy as np
import tacoma as tc
import networkx as nx
# static structure parameters
N = 100
mean_degree = 1.5
p = mean_degree / (N-1.0)
# temporal parameters
edge_lists = []
mean_tau = 1.0
t0 = 0.0
tmax = 100.0
t = []
this_time = t0
# Generate a new random network
while this_time < tmax:
G = nx.fast_gnp_random_graph(N, p)
these_edges = list(G.edges())
t.append(this_time)
edge_lists.append(these_edges)
this_time += np.random.exponential(scale=1/mean_tau)
# save to _tacoma-object
el = tc.edge_lists()
el.N = N
el.t = t
el.edges = edge_lists
el.tmax = tmax
print("Number of mistakes:", tc.verify(el))