_tacoma.FlockworkPModel¶
-
class
_tacoma.
FlockworkPModel
¶ Base class for the simulation of a simple Flockwork-P model. Pass this to
tacoma.api.gillespie_epidemics()
ortacoma.api.markov_epidemics()
.-
__init__
(self: _tacoma.FlockworkPModel, E: List[Tuple[int, int]], N: int, gamma: float, P: float, t0: float = 0.0, save_temporal_network: bool = False, save_aggregated_network: bool = False, seed: int = 0, verbose: bool = False) → None¶ Parameters: - E (list of pair of int) – Initial edge list.
- N (int) – Number of nodes in the temporal network.
- gamma (float) – The probability per unit time per node that any event happens.
- P (float) – The probability to reconnect when an event happened.
- t0 (float, default = 0.0) – initial time
- save_temporal_network (bool, default: False) – If this is True, the changes are saved in an instance of
_tacoma.edge_changes()
(in the attribute edge_changes. - save_aggregated_network (bool, default: False) – If this is True, the aggregated network is computed on the fly.
After the simulation, access it with
finish_and_get_aggregated_network
- seed (int, default = 0) – Seed for RNG initialization. If this is 0, the seed will be initialized randomly.
However, the generator will be rewritten
in
tacoma.api.gillespie_SIS_EdgeActivityModel()
anyway. - verbose (bool, default = False) – Be talkative.
Methods
__init__
(self, E, int]], N, gamma, P, t0, …)param E: Initial edge list. finish_and_get_aggregated_network
(self, arg0)Get a list, each entry contains a pair of ints (the edge) and a float, corresponding to the total get_current_edgelist
(self)Get an edge list of the current network state. set_initial_configuration
(self, arg0, arg1)Reset the state of the network to a certain graph ( list
ofset
ofint
)simulate
(self, t_run_total, reset, …)Simulate a Flockwork model until t_run_total
.Attributes
N
Number of nodes. edge_changes
An instance of _tacoma.edge_changes
with the saved temporal network (only if save_temporal_network is True).-